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Quantifying entanglement: SVD

(Schmidt Decomposition, aka SVD) Suppose |ψAB〉 is the pure
state of a composite system, AB. Then there exists orthonormal
states |Φα

A〉 for A and orthonormal states |θ α

B 〉 for B

|ψAB〉= ∑
α

λα |Φα

A〉⊗ |θ α

B 〉

where λα ’s satisfy ∑α |λα |2 = 1 known as Schmidt numbers.

The number of non-zero Schmidt numbers is called the Schmidt
rank, χ, of the state (a quantification of entanglement) .
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Quantifying entanglement: Entropy

Another measure of entanglement is entanglement entropy.

Recall we had
|ψAB〉= ∑

α

λα |Φα

A〉⊗ |θ α

B 〉

where λα ’s satisfy ∑α |λα |2 = 1. The entanglement entropy is:

S ≡−∑
α

|λα |2 log |λα |2

where |λα |2 = pα are the probabilities.
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Area laws

Area Laws
2

FIG. 1 A lattice L with a distinguished set I ⇢ L (shaded area).
Vertices depict the boundary @I of I with surface area s(I) = |@I|.

of the region I , the state will not be pure in general and will
have a non-vanishing von-Neumann entropy S(⇢I). 1

In contrast to thermal states this entropy does not originate
from a lack of knowledge about the microstate of the sys-
tem. Even at zero temperature we will encounter a non-zero
entropy! This entropy arises because of a very fundamental
property of quantum mechanics: Entanglement. This quite in-
triguing trait of quantum mechanics gives rise to correlations
even in situations where the randomness cannot be traced back
to a mere lack of knowledge. The mentioned quantity, the en-
tropy of a subregion is called entanglement entropy or geomet-
ric entropy and, in quantum information, entropy of entangle-
ment, which represents an operationally defined entanglement
measure for pure states (for recent reviews see refs.125,186).

In the context of quantum field theory, questions of scal-
ing of entanglement entropies in the size of I have some tra-
dition. Seminal work on the geometric entropy of the free
Klein-Gordon field23,207 and subsequent work on conformal
field theories36,43,118,122,226 was driven in part by the intriguing
suggested connection to the Bekenstein-Hawking black hole
entropy17,18,117.

In recent years, studies of properties of the entanglement
entropy in this sense have enjoyed a revival initiated in
refs.7,171,172,223. Importantly, this renewed activity is benefit-
ting from the new perspectives and ideas of quantum informa-
tion theory, and from the realisation of their significance for
the understanding of numerical methods and especially their
efficiency for describing quantum many-body physics. Quan-
tum information theory also provides novel conceptual and
mathematical techniques for determining properties of the ge-
ometric entropy analytically.

At the heart of these studies are questions like: What role do
genuine quantum correlations—entanglement—play in quan-
tum many-body systems? Typically, in such investigations,
one abstracts to a large extent from the microscopic specifics
of the system: Quite in the spirit of studies of critical phe-

1 Of interest are also other entropies, such as the Renyi entropies, S↵(⇢) =
(1 � ↵)�1 log2 tr[⇢↵] with ↵ � 0. For ↵ & 1 the usual von-Neumann
entropy is recovered. In particular in the context of simulatability, Renyi
entropies for arbitrary ↵ play an important role.

nomena, one thinks less of very detailed properties, but is
rather interested in the scaling of the entanglement entropy
when the distinguished region grows in size. In fact, for quan-
tum chains, this scaling of entanglement as genuine quantum
correlations—a priori very different from the scaling of two-
point correlation functions—reflects to a large extent the crit-
ical behavior of the quantum many-body system, and shares
some relationship to conformal charges.

At first sight one might be tempted to think that the entropy
of a distinguished region I , will always possess an extensive
character. Such a behavior is referred to as a volume scaling
and is observed for thermal states. Intriguingly, for typical
ground states, however, this is not at all what one encounters:
Instead, one typically finds an area law, or an area law with
a small (often logarithmic) correction: This means that if one
distinguishes a region, the scaling of the entropy is merely
linear in the boundary area of the region. The entanglement
entropy is then said to fulfill an area law. It is the purpose of
this article to review studies on area laws and the scaling of
the entanglement entropy in a non-technical manner.

The main four motivations to approach this question
(known to the authors) are as follows:

• The holographic principle and black hole entropy:
The historical motivation to study the entanglement or
geometric entropy stems from considerations of black
hole physics: It has been suggested in the seminal work
of refs.23,207 that the area law of the geometric entropy
for a discrete version of a massless free scalar field—
then numerically found for an imaginary sphere in a ra-
dial symmetry—could be related to the physics of black
holes,118 in particular the Bekenstein-Hawking entropy
of a black hole which is proportional to its bound-
ary surface. It has been muted that the holographic
principle29—the conjecture that the information con-
tained in a volume of space can be represented by a the-
ory which lives in the boundary of that region—could
be related to the area law behavior of the entanglement
entropy in microscopic theories.

• Distribution of quantum correlations in quantum
many-body systems: Area laws also say something
quite profound on how quantum correlations are
distributed in ground states of local quantum many-
body systems. Interactions in quantum many-body
systems are typically local, which means that sys-
tems interact only over a short distance with a finite
number of neighbors. The emergence of an area
law then provides support for the intuition that short
ranged interactions require that quantum correlations
between a distinguished region and its exterior are
established via its boundary surface. That a strict
area law emerges is by no means obvious from
the decay of two-point correlators, as we will see.
Quantum phase transitions are governed by quantum
fluctuations at zero temperature, so it is more than
plausible to observe signatures of criticality on the
level of entanglement and quantum correlations. This
situation is now particularly clear in one-dimensional

Picture from Eisert, Cramer, Plenio, Rev. Mod. Phys. 82 (2010)

Area law: Suppose you have a Hamiltonian with only local
interactions, and a quantum system is in the ground state of the
Hamiltonian. Then the entropy of entanglement between two
subsystems of a quantum system is proportional to the area of the
boundary between them.
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Area law and implications for simulability

1D gapped local systems obey an area law.
[M.B. Hastings (2007)]
This makes them easy to simulate on a classical comuter.

Matrix Product States, DMRG, PEP, etc. work very well for
1D systems with an area law.
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higher dimensions

It is believed that higher-dimensional gapped systems obey an area
law (open).
For critical systems, it is believed the area law contains an extra log
factor.

In D spatial dimensions one expects:

S ∼ LD−1 : Gapped
S ∼ LD−1 log (L) : Critical
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Phase transitions

For 1-dimensional spin chains at critical points, the continuous limit
is generally a conformal field theory:

Entropy of entanglement: O(logn),
Spectral gap: O(1/n).
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Basic idea that started our research

Simulating 1D spin chains with local Hamiltonians is
BQP-complete. (Gottesman, Irani).
1D spin chains with low entanglement are classically simulable.

Therefore: there must be 1D spin chains with high entanglement.
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arxiv:1001.1006

Movassagh, Farhi, Goldstone, Nagaj, Osborne, Shor (2010)

We investigated spin chains with qudits of dimenision d , interaction
is a projection dimension r .

The ground state is frustration-free but entangled when
d ≤ r ≤ d2/4.
we could compute the Schmidt ranks,
We could not obtain definitive results on the spectral gap or
the entanglement entropy.
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arXiv:0901.1107

Irani (2010)

There are Hamiltonians whose ground states have:
spectral gap O(1/nc),
entanglement entropy O(n),
complicated Hamiltonians,
high-dimensional spins.
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Bravyi et al 2012

Bravyi, Caha, Movassagh, Nagaj, Shor (2012)

There are Hamiltonians whose ground states
have spectral gap O(1/nc),
have entanglement entropy O(logn),
are frustration free,
have spins of dimension 3.
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New result

Movassagh, Shor (2014)

There are Hamiltonians whose ground states
have spectral gap O(1/nc), c ≥ 2
have entanglement entropy O(

√
n),

are frustration free,
have spins of dimension 2s +1, s > 1.
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Another new result

Movassagh, Shor (2014)

There are Hamiltonians whose ground states
numerically have spectral gap O(1/nc), c ≥ 2
have entanglement entropy O(

√
n),

are unique,
are not frustration free,
have spins of dimension 2s +1, s > 1.

These properties do not depend on the boundary conditions.
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Summary of the new result

The ’Motzkin state’, |M2n,s〉 is the unique ground state of
the local Hamiltonian
Entanglement entropy violates the area law:

S (n) = c1 (s) log2 (s)
√

n +
1
2
log (n) + c2 (s)

χ =
sn+1−1

s−1
.

The gap upper bound: O
(
n−2). Brownian excursion and

universality of Brownian motion.
The gap lower bound: Ω((n−c), c � 1. Fractional matching
and statistics of random walks
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States: d = 2s +1

  

d = 3

s = 1

(

0

)

0

r1

ℓ1
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States

  

d = 3

s = 1

(

0

)

0

r1

ℓ1
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s ≥ 1

  

d = 5

s = 2

(

[

0

)

]

0

r1

ℓ1

ℓ2

r2

Ramis Movassagh Movassagh and Shor: arXiv:1408.1657 [quant-ph]



Quantifying entanglement, area laws and simulability
The Local Hamiltonian and Gap

Ground states
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How to quantify entanglement

  

Entanglement of Motzkin States is due to 
the mutual information between halves

( ( ( () ) ) )0 0

Motzkin walk

A B
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How to quantify entanglement

  

Entanglement of Motzkin States is due to 
the mutual information between halves

( ( ( () ) ) )0 0

Motzkin walk

A B

m
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More than one type of ’parenthesis’ e.g., s = 2

  

Suppose there are two types  (  and  {   to match

{ ( { (} ) } )0 0
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More than one type of ’parenthesis’ e.g., s = 2

  

Entanglement of Colored Motzkin States is due to 
the mutual information between halves

{ ( { (} ) } )0 0

Motzkin walk
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Subtlety for s > 1

  

Suppose there are two types  (  and  {   to match

( { } )0 0
O.K

.
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Matching that does NOT work

  

Suppose there are two types  (  and  {   to match

( { } )0 0
O.K

.

( { })0 0
Not 

O.K
. !
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The ground state s = 1

|M2n,s〉=
1√
M2n

∑
p
|pth Motzkin walk〉

e.g., 2n = {2,4}

|M2〉 =
1
2
{ |00〉+ |`r〉}

|M4〉 =
1
9
{ |0000〉+ |00`r〉+ |0`0r〉+ |`00r〉+ |0`0r〉

+|`0r0〉+ |`r00〉+ |`r`r〉+ |``rr〉}
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The ground state s ≥ 1

M2n,s〉=
1√
M2n

∑
p
|pth s-colored Motzkin walk〉

e.g., 2n = 2

M2,s〉 ∼
{
|00〉+

s

∑
k=1
|`k rk〉

}
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Entanglement: Schmidt rank χ

pn,m,s =
M2

n,m,s

Nn,s
, Nn,s ≡

n

∑
m=0

smM2
n,m,s , (1)

Geometric sum on m gives χ = sn+1−1
s−1 and entanglement entropy is

S ({pn,m,s}) =−
n

∑
m=0

smpn,m,s log2 pn,m,s . (2)
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Combinatorial factors

Mn,m,s : number of walks starting at zero ending at height m with s
total colors

Mn,m,s =
m +1
n +1 ∑

i≥0

(
n +1

i +m +1 i n−2i −m

)
s i

≡ ∑
i≥0

Mn,m,i ,s
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Location of the Saddle

80
60

m

Mn,m,i,s ,  n = 90  and s = 1

40
20

00
10

20
i

30
40

14
12
10
8
6
4
2
0

#1039

Saddle point: Mn,m,s,i+1
Mn,m,s,i

= 1 ,
Mn,m+1,s,i
Mn,m,s,i

= 1 .
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Saddle point approximation

Turning the sum into an integral (carefully) and performing saddle
point integration m = α

√
n :

Mn,m,s ≈
1

2
√

πσn3/2

(√
s

σ

)n+1

αs−α
√

n/2 exp
(
−α2

4σ

)
.

S ≈ 2 log (s)

√
2σ

π

√
n +

1
2
logn + γ− 1

2
+

1
2
log (2πσ) ,

σ ≡
√

s
1+2

√
s
.
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Underlying Hamiltonian ’implements’ local moves

H =

{
s

∑
k=1

rk〉1〈rk +
s

∑
k=1

`k〉2n〈`k
}

+
2n−1

∑
j=1

Πj ,j+1,

Πj ,j+1 projects onto the span of (∀ k ,= 1, · · · ,s)

1√
2

[
0`k〉 − `k0〉

]
: 0`k ←→ `k0

1√
2

[
0rk〉 − rk0〉

]
: 0rk ←→ rk0

1√
2

[
00〉 − `k rk〉

]
: 00←→ `k rk

Πcross = ∑
k 6=i

`k ri 〉〈ri`k .

Ramis Movassagh Movassagh and Shor: arXiv:1408.1657 [quant-ph]
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Meaning of terms in Hamiltonian

The terms

1√
2

[
0`k〉 − `k0〉

]
: 0`k ←→ `k0

1√
2

[
0rk〉 − rk0〉

]
: 0rk ←→ rk0

1√
2

[
00〉 − `k rk〉

]
: 00←→ `k rk

enforce an equal superposition of all walks which can be reached by
switching `k and 0 • switching rk and 0,
replacing `k rk by 00.
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Meaning of terms in Hamiltonian

The cross terms
Πcross = ∑

k 6=i
`k ri 〉〈ri`k .

ensure that the types of parentheses match.

The boundary terms{
s

∑
k=1

rk〉1〈rk +
s

∑
k=1

`k〉2n〈`k
}

ensure that the walk is balanced.
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Gap Upper-Bound
We show that the gap is O(n−2).
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Gap: Upper bound I

We want any state |φ〉 such that

〈φ |H|φ〉= O
(
n−2) , 〈φ ground|H|φ〉<

1
2
.

Then
|φ〉= αg |φg 〉+ α1|φ1〉+ α2|φ2〉+ . . .

and

〈φ |H|φ〉 = α
2
1 〈φ1|H|φ1〉+ α

2
2 〈φ2|H|φ2〉+ α

2
3 〈φ3|H|φ3〉+ . . .

≥ (1−α
2
g )〈φ1|H|φ1〉
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Gap: Upper bound II

φ〉=
1√
M2n

∑
p

e

{
2π iθ

(
Area of pth Motzkin walk

)}
|pth Motzkin walk〉

〈M2n|φ〉 =
1

M2n
∑
p

e

{
2π iθ

(
Area of pth Motzkin walk

)}
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Gap: Upper bound II

φ〉=
1√
M2n

∑
p

e

{
2π iθ

(
Area of pth Motzkin walk

)}
|pth Motzkin walk〉

〈M2n|φ〉 =
1

M2n
∑
p

e

{
2π iθ

(
Area of pth Motzkin walk

)}

lim
n→∞
〈M2n|φ〉 ≈ FA (θ)≡

∫
∞

0
fA (x)e2π ixθ dx .
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Gap: Upper bound III

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

2.5

fA(x)

0 10 20 30 40
θ0.0

0.2

0.4

0.6

0.8

1.0
FA(θ)

fA (x) =
2
√
6

x2

∞

∑
j=1

v2/3
j e−vj U

(
−5
6
,
4
3

;vj

)
x ∈ [0,∞)

vj = 2 |aj |3 /27x2 where aj are the zeros of the Airy function.
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Gap Lower-Bound
Θ(n−c), for some constant c .
We use the same techniques as in Bravyi, Caha, Movassagh, Nagaj,
Shor.

the projection lemma relating Motzkin walks and Dyck walks,
proving rapid mixing with the canonical paths method,
fractional matchings.
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This Hamiltonian isn’t completely satisfactory
requires boundary conditions to have unique ground state.

Without the boundary conditions, there would be
(n+2

2

)
ground

states, each coming from a superposition of unbalanced walks:

( 0 ( ( ) 0 ) ()

How can we eliminate these ground states without boundary
conditions?
We add an energy penalty for ` and r — i.e., for ’(’ and ’)’.
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Hamiltonian with extermal magnetic field.

How can we prove anything about these states?
The argument that the gap is at most O(n−2) still holds.
Only have to worry about the gap in two cases:

Unbalanced walks
Superposition of balanced walks with positive coefficients.
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Hamiltonian with extermal magnetic field.

The gap for unbalanced walks:

Let ε be the energy penalty for `k , rk .
We can use perturbation theory (backed up with numerics) to show
that these ground states have an increased energy of around cε2/n.
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Hamiltonian with extermal magnetic field.

The gap for states in the balanced subspace.

There is a polynomial gap in the balanced subspace in the
Hamiltonian without an energy penalty. It appears from numerics
(on chains of relatively small length) that the gap in this case is
Numerics seem to show that the gap in the balanced subspace with
an energy penalty is also Θ(n−2).
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Open problems

Is there a continuum limit for these Hamiltonians?
Can we rigorously prove the results with an external magnetic
field?
Are there frustration-free Hamiltonians with unique ground
states which violate the area law by large factors?
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Lastly...

Thank you
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