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Quantifying entanglement, area laws and simulability

Quantifying entanglement: SVD

(Schmidt Decomposition, aka SVD) Suppose |wag) is the pure
state of a composite system, AB. Then there exists orthonormal
states |®%) for A and orthonormal states |05) for B

lWag) =Y Aq|®%) ®(65)
o

where Ay 's satisfy ¥ |Aq|? = 1 known as Schmidt numbers.

The number of non-zero Schmidt numbers is called the Schmidt
rank, x, of the state (a quantification of entanglement) .
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Quantifying entanglement: Entropy

Another measure of entanglement is entanglement entropy.

Recall we had
|WaB) Z)LOC’(DA ®16g)

where Ay's satisfy ¥, |Aq|> = 1. The entanglement entropy is:

_ZMaFlOgMa‘Q
o

where |1y |*> = py are the probabilities.
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INCERENS

Area Laws

Picture from Eisert, Cramer, Plenio, Rev. Mod. Phys. 82 (2010)

Area law: Suppose you have a Hamiltonian with only local
interactions, and a quantum system is in the ground state of the
Hamiltonian. Then the entropy of entanglement between two
subsystems of a quantum system is proportional to the area of the
boundary between them.
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Area law and implications for simulability

1D gapped local systems obey an area law.
[M.B. Hastings (2007)]

This makes them easy to simulate on a classical comuter.

@ Matrix Product States, DMRG, PEP, etc. work very well for
1D systems with an area law.
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higher dimensions

It is believed that higher-dimensional gapped systems obey an area
law (open).

For critical systems, it is believed the area law contains an extra log
factor.

In D spatial dimensions one expects:

S ~ P! : Gapped
S ~ LPllog(L) : Critical
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Phase transitions

For 1-dimensional spin chains at critical points, the continuous limit
is generally a conformal field theory:

e Entropy of entanglement: O(logn),
e Spectral gap: O(1/n).
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Basic idea that started our research

@ Simulating 1D spin chains with local Hamiltonians is
BQP-complete. (Gottesman, Irani).

@ 1D spin chains with low entanglement are classically simulable.

Therefore: there must be 1D spin chains with high entanglement.
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arxiv:1001.1006

Movassagh, Farhi, Goldstone, Nagaj, Osborne, Shor (2010)

We investigated spin chains with qudits of dimenision d, interaction
is a projection dimension r.

@ The ground state is frustration-free but entangled when
d<r<d?/4.

@ we could compute the Schmidt ranks,

@ We could not obtain definitive results on the spectral gap or
the entanglement entropy.
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arXiv:0901.1107

Irani (2010)

There are Hamiltonians whose ground states have:
e spectral gap O(1/n°),
@ entanglement entropy O(n),
@ complicated Hamiltonians,

@ high-dimensional spins.
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Bravyi et al 2012

Bravyi, Caha, Movassagh, Nagaj, Shor (2012)

There are Hamiltonians whose ground states
@ have spectral gap O(1/n°),
@ have entanglement entropy O(logn),
@ are frustration free,

@ have spins of dimension 3.
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New result

Movassagh, Shor (2014)

There are Hamiltonians whose ground states
@ have spectral gap O(1/n¢), c>2
e have entanglement entropy O(1/n),
@ are frustration free,

@ have spins of dimension 2s+1,s > 1.
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Another new result

Movassagh, Shor (2014)

There are Hamiltonians whose ground states
e numerically have spectral gap O(1/n€), ¢ > 2
@ have entanglement entropy O(v/n),
@ are unique,
@ are not frustration free,
@ have spins of dimension 2s+1, s > 1.

These properties do not depend on the boundary conditions.
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Summary of the new result

e The 'Motzkin state’, |.#5, ) is the unique ground state of
the local Hamiltonian

o Entanglement entropy violates the area law:

S(n) = ci(s)logy(s) v+ % log (1) + ¢ (s)
sn+1 -1

= s—1

@ The gap upper bound: ﬁ(n_2). Brownian excursion and
universality of Brownian motion.

@ The gap lower bound: Q((n™¢), ¢ > 1. Fractional matching
and statistics of random walks
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States: d =2s+1
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States
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Ground states
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How to quantify entanglement

Entanglement of Motzkin States is due to
the mutual information between halves

A : B

()(0f§(0))|)
| |
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How to quantify entanglement

Entanglement of Motzkin States is due to
the mutual information between halves

A : B

()(0f§(0))|)
| |
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More than one type of 'parenthesis’ e.g., s =2

Suppose there are two types ( and { to match

{ ¥y o {i (o0 ) })
| | |
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More than one type of 'parenthesis’ e.g., s =2

Entanglement of Colored Motzkin States is due to
the mutual information between halves

{y (o0 {i(0) 3} )
| | |
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Subtlety for s > 1

Suppose there are two types ( and { to match

\0 ° QMQ ° 0\
(
|
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Matching that does NOT work

Suppose there are two types ( and { to match

0 { 0 ) } o, N
| | | So¥

‘. o .‘5‘0 o Q‘
( :
|

e o o e o o
) .
|
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The ground state s =1

1

«/lns:
| AM2n,s) N

Z]pth Motzkin walk)
P

e.g., 2n=1{2,4}

) = 51 100)+er)}

) — é { 10000) + [00£r) + [0£0F) + |00F) -+ |0£0F)
+[€0r0) + |€r00) + |£rlr) + |Clrr)}
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The ground state s > 1

Mon.s) = Z’|pth s-colored Motzkin walk)

F

eg.,2n=2

Mo s) ~ { 100) + i |€krk>}

k=1
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Entanglement: Schmidt rank ¥

Mr%ms <
Pnms = T7 s= Z nmsﬂ (1)
n,s m=0

. . sntl_1 .
Geometric sum on m gives ¥ = *_—= and entanglement entropy is

({pnms} Z s ans|0g2pnms (2)

m=0
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Combinatorial factors

My, ms: number of walks starting at zero ending at height m with s

total colors

Mn,m,s

n+1,.20 i+m+1 i n—2i—m

Z Mn,m,hs

i>0
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Location of the Saddle

39
X1014 M .. ,n=90 ands=1

. . Mn,m,s,i+1 _ Mn,m+14,s,i _
Saddle point:  —; = 1, Vs, = 1

n,m,s,i
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Saddle point approximation

Turning the sum into an integral (carefully) and performing saddle
point integration m = ot+/n :

n+1 2
M ms =~ # ﬁ as~ /2 exp % .
" 2ymon3/2 \ o Ao

20 1 1 1
2log(s) 1/ - ﬁ+§|ogn+y—§+§|og(2n6) )

Vs
1+2y/s "

S

%

c =
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The Local Hamiltonian and Gap

Underlying Hamiltonian ‘implements’ local moves

2n—1

S S
H= { Y ru(ne+ Y, €k>2n<€k} + ) Mg,
k=1 k=1 j=1

M;j+1 projects onto the span of (V k,=1,---,5s)

I&\ﬂ&\f%%

0eky — ko)
orky — rk0>-
00) — £5rky

00k «— k0
ork «— rko

00 «— Ckrk

feoss = Z ﬁkr,-><r,-€k.
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The Local Hamiltonian and Gap

Meaning of terms in Hamiltonian

The terms

0cky — ko) 00k s ko

orky — rk0>_ . 0rk«—rko

00) — k)]0 00 s KK

§\H§\f§\~

enforce an equal superposition of all walks which can be reached by
@ switching /% and 0 e switching r¥ and 0,
e replacing ¢krk by 00.
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The Local Hamiltonian and Gap

Meaning of terms in Hamiltonian

The cross terms

N = ¥ 6r) (rit.
ki

ensure that the types of parentheses match.

The boundary terms

{ zs: ri)1(re + Xs: €k>2n<€k}
k=1 k=1

ensure that the walk is balanced.
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Gap Upper-Bound

We show that the gap is 0(n~?).
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The Local Hamiltonian and Gap
Gap: Upper bound |

We want any state |¢) such that

(O1HI0) = & (172). (0 gunalHI6) < 5.

Then
|0) = 0g|og) + a1 |dn) + a2|d2) + ...

and

(0|H|9) = i (91|H|g1) + 05 (92| H|d2) + 05 ($3|H|93) + ...
> (1—a})(¢1|H|1)
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The Local Hamiltonian and Gap

Gap: Upper bound Il

\/Al/l—%;e{mm (Area of pth Motzkin wa|k>}

¢) = |pth Motzkin walk)

1 X:e{mi@ <Area of pth Motzkin waIk)}

<%2n’¢> Mo,

p
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The Local Hamiltonian and Gap
Gap: Upper bound Il

1 e{2m’9 (Area of pth Motzkin wa|k>}

m; |pth Motzkin walk)

9)=

1 X:e{mi@ <Area of pth Motzkin waIk)}

<%2n’¢> Mo,

p

im (4anl0) ~ Fa(0) = [~ fa(x) e dix
f—ree 0
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The Local Hamiltonian and Gap

Gap: Upper bound Il

) 16
251
0.8r
2.0
0.6
1.5¢
041
1.0f
05¢ 02p
015 1:0 115 2:0 X 0'00 16 20 3“0 4‘09
2V6 & 23 54
J— -V . .
fA(X)_TZVj e iU 63" x € [0,00)
X< 5

v; = 2|aj|? /27x? where a; are the zeros of the Airy function.
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The Local Hamiltonian and Gap

Gap Lower-Bound

©(n~¢), for some constant c.
We use the same techniques as in Bravyi, Caha, Movassagh, Nagaj,
Shor.

@ the projection lemma relating Motzkin walks and Dyck walks,
@ proving rapid mixing with the canonical paths method,

o fractional matchings.
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The Local Hamiltonian and Gap

This Hamiltonian isn't completely satisfactory
@ requires boundary conditions to have unique ground state.

Without the boundary conditions, there would be ("}?) ground
states, each coming from a superposition of unbalanced walks:

(0(()0)0)

How can we eliminate these ground states without boundary
conditions?
We add an energy penalty for £ and r — i.e., for '(" and ")
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The Local Hamiltonian and Gap

Hamiltonian with extermal magnetic field.

How can we prove anything about these states?
The argument that the gap is at most &(n~?2) still holds.
Only have to worry about the gap in two cases:

o Unbalanced walks

@ Superposition of balanced walks with positive coefficients.
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The Local Hamiltonian and Gap

Hamiltonian with extermal magnetic field.

The gap for unbalanced walks:

Let € be the energy penalty for ¢, rk.
We can use perturbation theory (backed up with numerics) to show
that these ground states have an increased energy of around ce?/n.
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The Local Hamiltonian and Gap

Hamiltonian with extermal magnetic field.

The gap for states in the balanced subspace.

There is a polynomial gap in the balanced subspace in the
Hamiltonian without an energy penalty. It appears from numerics
(on chains of relatively small length) that the gap in this case is
Numerics seem to show that the gap in the balanced subspace with
an energy penalty is also ©(n2).
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The Local Hamiltonian and Gap

Open problems

o |s there a continuum limit for these Hamiltonians?

@ Can we rigorously prove the results with an external magnetic
field?

@ Are there frustration-free Hamiltonians with unique ground
states which violate the area law by large factors?
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Lastly...

Thank you
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